Manual Page Search Parameters


PRoot - chroot, mount --bind, and binfmt_misc without privilege/setup

proot [option] ... [command]

PRoot is a user-space implementation of chroot, mount --bind, and binfmt_misc. This means that users don't need any privileges or setup to do things like using an arbitrary directory as the new root filesystem, making files accessible somewhere else in the filesystem hierarchy, or executing programs built for another CPU architecture transparently through QEMU user-mode. Also, developers can use PRoot as a generic Linux process instrumentation engine thanks to its extension mechanism, see CARE for an example. Technically PRoot relies on ptrace, an unprivileged system-call available in every Linux kernel.

The new root file-system, a.k.a guest rootfs, typically contains a Linux distribution. By default PRoot confines the execution of programs to the guest rootfs only, however users can use the built-in mount/bind mechanism to access files and directories from the actual root file-system, a.k.a host rootfs, just as if they were part of the guest rootfs.

When the guest Linux distribution is made for a CPU architecture incompatible with the host one, PRoot uses the CPU emulator QEMU user-mode to execute transparently guest programs. It's a convenient way to develop, to build, and to validate any guest Linux packages seamlessly on users' computer, just as if they were in a native guest environment. That way all of the cross-compilation issues are avoided.

PRoot can also mix the execution of host programs and the execution of guest programs emulated by QEMU user-mode. This is useful to use host equivalents of programs that are missing from the guest rootfs and to speed up build-time by using cross-compilation tools or CPU-independent programs, like interpreters.

It is worth noting that the guest kernel is never involved, regardless of whether QEMU user-mode is used or not. Technically, when guest programs perform access to system resources, PRoot translates their requests before sending them to the host kernel. This means that guest programs can use host resources (devices, network, ...) just as if they were "normal" host programs.

The command-line interface is composed of two parts: first PRoot's options (optional), then the command to launch (/bin/sh if not specified). This section describes the options supported by PRoot, that is, the first part of its command-line interface.

Use path as the new guest root file-system, default is /.

The specified path typically contains a Linux distribution where all new programs will be confined. The default rootfs is / when none is specified, this makes sense when the bind mechanism is used to relocate host files and directories, see the -b option and the Examples section for details.

It is recommended to use the -R or -S options instead.

Make the content of path accessible in the guest rootfs.

This option makes any file or directory of the host rootfs accessible in the confined environment just as if it were part of the guest rootfs. By default the host path is bound to the same path in the guest rootfs but users can specify any other location with the syntax: -b *host_path*:*guest_location*. If the guest location is a symbolic link, it is dereferenced to ensure the new content is accessible through all the symbolic links that point to the overlaid content. In most cases this default behavior shouldn't be a problem, although it is possible to explicitly not dereference the guest location by appending it the ! character: -b *host_path*:*guest_location!*.

Execute guest programs through QEMU as specified by command.

Each time a guest program is going to be executed, PRoot inserts the QEMU user-mode command in front of the initial request. That way, guest programs actually run on a virtual guest CPU emulated by QEMU user-mode. The native execution of host programs is still effective and the whole host rootfs is bound to /host-rootfs in the guest environment.

Set the initial working directory to path.

Some programs expect to be launched from a given directory but do not perform any chdir by themselves. This option avoids the need for running a shell and then entering the directory manually.

Set the level of debug information to value.

The higher the integer value is, the more detailed debug information is printed to the standard error stream. A negative value makes PRoot quiet except on fatal errors.

Print version, copyright, license and contact, then exit.
Print the version and the command-line usage, then exit.

The following options enable built-in extensions. Technically developers can add their own features to PRoot or use it as a Linux process instrumentation engine thanks to its extension mechanism, see the sources for further details.

Make current kernel appear as kernel release string.

If a program is run on a kernel older than the one expected by its GNU C library, the following error is reported: "FATAL: kernel too old". To be able to run such programs, PRoot can emulate some of the features that are available in the kernel release specified by string but that are missing in the current kernel.

-0, --root-id
Make current user appear as "root" and fake its privileges.

Some programs will refuse to work if they are not run with "root" privileges, even if there is no technical reason for that. This is typically the case with package managers. This option allows users to bypass this kind of limitation by faking the user/group identity, and by faking the success of some operations like changing the ownership of files, changing the root directory to /, ... Note that this option is quite limited compared to fakeroot.

Make current user and group appear as string "uid:gid".

This option makes the current user and group appear as uid and gid. Likewise, files actually owned by the current user and group appear as if they were owned by uid and gid instead. Note that the -0 option is the same as -i 0:0.

Map ports to others with the syntax as string "port_in:port_out ...".

This option makes PRoot intercept bind and connect system calls, and change the port they use. The port map is specified with the syntax: -b *port_in*:*port_out*. For example, an application that runs a MySQL server binding to 5432 wants to cohabit with other similar application, but doesn't have an option to change its port. PRoot can be used here to modify this port: proot -p 5432:5433 myapplication. With this command, the MySQL server will be bound to the port 5433. This command can be repeated multiple times to map multiple ports.

Activates the network cooperation mode.

This option makes PRoot intercept bind() system calls and change the port they are binding to to 0. With this, the system will allocate an available port. Each time this is done, a new entry is added to the port mapping entries, so that corresponding connect() system calls use the same resulting port.

The following options are aliases for handy sets of options.

Alias: -r *path* + a couple of recommended -b.

Programs isolated in path, a guest rootfs, might still need to access information about the host system, as it is illustrated in the Examples section of the manual. These host information are typically: user/group definition, network setup, run-time information, users' files, ... On all Linux distributions, they all lie in a couple of host files and directories that are automatically bound by this option:

  • /etc/host.conf
  • /etc/hosts
  • /etc/hosts.equiv
  • /etc/mtab
  • /etc/netgroup
  • /etc/networks
  • /etc/passwd
  • /etc/group
  • /etc/nsswitch.conf
  • /etc/resolv.conf
  • /etc/localtime
  • /dev/
  • /sys/
  • /proc/
  • /tmp/
  • /run/
  • /var/run/dbus/system_bus_socket
  • $HOME
  • path

Alias: -0 -r *path* + a couple of recommended -b.

This option is useful to safely create and install packages into the guest rootfs. It is similar to the -R option except it enables the -0 option and binds only the following minimal set of paths to avoid unexpected changes on host files:

  • /etc/host.conf
  • /etc/hosts
  • /etc/nsswitch.conf
  • /etc/resolv.conf
  • /dev/
  • /sys/
  • /proc/
  • /tmp/
  • /run/shm
  • $HOME
  • path

If an internal error occurs, proot returns a non-zero exit status, otherwise it returns the exit status of the last terminated program. When an error has occurred, the only way to know if it comes from the last terminated program or from proot itself is to have a look at the error message.

PRoot reads links in /proc/<pid>/fd/ to support openat(2)-like syscalls made by the guest programs.

In the following examples the directories /mnt/slackware-8.0 and /mnt/armslack-12.2/ contain a Linux distribution respectively made for x86 CPUs and ARM CPUs.

chroot equivalent

To execute a command inside a given Linux distribution, just give proot the path to the guest rootfs followed by the desired command. The example below executes the program cat to print the content of a file:

proot -r /mnt/slackware-8.0/ cat /etc/motd
Welcome to Slackware Linux 8.0

The default command is /bin/sh when none is specified. Thus the shortest way to confine an interactive shell and all its sub-programs is:

proot -r /mnt/slackware-8.0/
$ cat /etc/motd
Welcome to Slackware Linux 8.0

mount --bind equivalent

The bind mechanism enables one to relocate files and directories. This is typically useful to trick programs that perform access to hard-coded locations, like some installation scripts:

proot -b /tmp/alternate_opt:/opt
$ cd to/sources
$ make install
install -m 755 prog "/opt/bin"
[...] # prog is installed in "/tmp/alternate_opt/bin" actually

As shown in this example, it is possible to bind over files not even owned by the user. This can be used to overlay system configuration files, for instance the DNS setting:

ls -l /etc/hosts
-rw-r--r-- 1 root root 675 Mar  4  2011 /etc/hosts

proot -b ~/alternate_hosts:/etc/hosts
$ echo '' > /etc/hosts
$ resolveip
IP address of is
$ echo '' > /etc/hosts
$ resolveip
IP address of is

Another example: on most Linux distributions /bin/sh is a symbolic link to /bin/bash, whereas it points to /bin/dash on Debian and Ubuntu. As a consequence a #!/bin/sh script tested with Bash might not work with Dash. In this case, the binding mechanism of PRoot can be used to set non-disruptively /bin/bash as the default /bin/sh on these two Linux distributions:

proot -b /bin/bash:/bin/sh [...]

Because /bin/sh is initially a symbolic link to /bin/dash, the content of /bin/bash is actually bound over this latter:

proot -b /bin/bash:/bin/sh
$ md5sum /bin/sh
089ed56cd74e63f461bef0fdfc2d159a  /bin/sh
$ md5sum /bin/bash
089ed56cd74e63f461bef0fdfc2d159a  /bin/bash
$ md5sum /bin/dash
089ed56cd74e63f461bef0fdfc2d159a  /bin/dash

In most cases this shouldn't be a problem, but it is still possible to strictly bind /bin/bash over /bin/sh -- without dereferencing it -- by specifying the ! character at the end:

proot -b '/bin/bash:/bin/sh!'
$ md5sum /bin/sh
089ed56cd74e63f461bef0fdfc2d159a  /bin/sh
$ md5sum /bin/bash
089ed56cd74e63f461bef0fdfc2d159a  /bin/bash
$ md5sum /bin/dash
c229085928dc19e8d9bd29fe88268504  /bin/dash

chroot + mount --bind equivalent

The two features above can be combined to make any file from the host rootfs accessible in the confined environment just as if it were initially part of the guest rootfs. It is sometimes required to run programs that rely on some specific files:

proot -r /mnt/slackware-8.0/
$ ps -o tty,command
Error, do this: mount -t proc none /proc

works better with:

proot -r /mnt/slackware-8.0/ -b /proc
$ ps -o tty,command
?        bash
?        proot -b /proc /mnt/slackware-8.0/
?        sh
?        ps -o tty,command

Actually there's a bunch of such specific files, that's why PRoot provides the option -R to bind automatically a pre-defined list of recommended paths:

proot -R /mnt/slackware-8.0/
$ ps -o tty,command
pts/6    bash
pts/6    proot -R /mnt/slackware-8.0/
pts/6    sh
pts/6    ps -o tty,command

chroot + mount --bind + su equivalent

Some programs will not work correctly if they are not run by the "root" user, this is typically the case with package managers. PRoot can fake the root identity and its privileges when the -0 (zero) option is specified:

proot -r /mnt/slackware-8.0/ -0
# id
uid=0(root) gid=0(root) [...]
# mkdir /tmp/foo
# chmod a-rwx /tmp/foo
# echo 'I bypass file-system permissions.' > /tmp/foo/bar
# cat /tmp/foo/bar
I bypass file-system permissions.

This option is typically required to create or install packages into the guest rootfs. Note it is not recommended to use the -R option when installing packages since they may try to update bound system files, like /etc/group. Instead, it is recommended to use the -S option. This latter enables the -0 option and binds only paths that are known to not be updated by packages:

proot -S /mnt/slackware-8.0/
# installpkg perl.tgz
Installing package perl...

chroot + mount --bind + binfmt_misc equivalent

PRoot uses QEMU user-mode to execute programs built for a CPU architecture incompatible with the host one. From users' point-of-view, guest programs handled by QEMU user-mode are executed transparently, that is, just like host programs. To enable this feature users just have to specify which instance of QEMU user-mode they want to use with the option -q:

proot -R /mnt/armslack-12.2/ -q qemu-arm
$ cat /etc/motd
Welcome to ARMedSlack Linux 12.2

The parameter of the -q option is actually a whole QEMU user-mode command, for instance to enable its GDB server on port 1234:

proot -R /mnt/armslack-12.2/ -q "qemu-arm -g 1234" emacs

PRoot allows one to mix transparently the emulated execution of guest programs and the native execution of host programs in the same file-system namespace. It's typically useful to extend the list of available programs and to speed up build-time significantly. This mixed-execution feature is enabled by default when using QEMU user-mode, and the content of the host rootfs is made accessible through /host-rootfs:

proot -R /mnt/armslack-12.2/ -q qemu-arm
$ file /bin/echo
[...] ELF 32-bit LSB executable, ARM [...]
$ /bin/echo 'Hello world!'
Hello world!
$ file /host-rootfs/bin/echo
[...] ELF 64-bit LSB executable, x86-64 [...]
$ /host-rootfs/bin/echo 'Hello mixed world!'
Hello mixed world!

Since both host and guest programs use the guest rootfs as /, users may want to deactivate explicitly cross-filesystem support found in most GNU cross-compilation tools. For example with GCC configured to cross-compile to the ARM target:

proot -R /mnt/armslack-12.2/ -q qemu-arm
$ export CC=/host-rootfs/opt/cross-tools/arm-linux/bin/gcc
$ export CFLAGS="--sysroot=/"   # could be optional indeed
$ ./configure; make

As with regular files, a host instance of a program can be bound over its guest instance. Here is an example where the guest binary of make is overlaid by the host one:

proot -R /mnt/armslack-12.2/ -q qemu-arm -b /usr/bin/make
$ which make
$ make --version # overlaid
GNU Make 3.82
Built for x86_64-slackware-linux-gnu

It's worth mentioning that even when mixing the native execution of host programs and the emulated execution of guest programs, they still believe they are running in a native guest environment. As a demonstration, here is a partial output of a typical ./configure script:

checking whether the C compiler is a cross-compiler... no

The source code for PRoot and CARE are hosted in the same repository on GitHub. Previous PRoot releases were packaged at, however, that repository has since been archived. The latest builds can be found under the job artifacts for the GitLab CI/CD Pipelines for each commit. The following commands can be used to download the latest x86_64 binary for convenience:

curl -LO
chmod +x ./proot
proot --version

Here follows a couple of URLs where some rootfs archives can be freely downloaded. Note that mknod errors reported by tar when extracting these archives can be safely ignored since special files are typically bound (see -R option for details).


Technically such rootfs archive can be created by running the following command on the expected Linux distribution:

tar --one-file-system --create --gzip --file my_rootfs.tar.gz /

The following ecosystem has developed around PRoot since it has been made publicly available.

  • ATOS: find automatically C/C++ compiler options that provide best optimizations.
  • CARE: archive material used during an execution to make it reproducible on any Linux system.
  • Debian noroot: use Debian Linux on Android without root access.
  • GNURoot: use several Linux distros on Android without root access.
  • JuNest: use Arch Linux on any Linux distros without root access.
  • OPAM2Debian: create Debian packages which contains a fully compiled OPAM installation.
  • OpenMOLE: execute programs on distributed computing environments.
  • Polysquare Travis Container: use several Linux distros on Travis-CI without root access.
  • Portable PyPy: portable 32 and 64 bit x86 PyPy binaries.
  • SIO Workers: batch long-term computations with Python.

Binaries from the Downloads section are likely more up-to-date.

  • Alpine Linux
  • Arch Linux
  • Debian
  • Gentoo
  • NixOS
  • Termux
  • Ubuntu
  • University of Chicago RCC
  • Void Linux

  • articles on Rémi's blog. Rémi (a.k.a Ivoire) is one of the PRoot developers.
  • presentation "Software engineering tools based on syscall instrumentation" during FOSDEM 2014.
  • presentation "SW testing & Reproducing a LAVA failures locally using CARE" during Linaro Connect USA 2014
  • presentation and essay "CARE: the Comprehensive Archiver for Reproducible Execution" (essay) during TRUST 2014
  • presentation "An Introduction to the CARE tool (dead link)" during HiPEAC CSW 2013
  • presentation and essay "PRoot: a Step Forward for QEMU User-Mode" (proceedings) during QUF'11
  • tutorial "How to install nix in home (on another distribution)"

  • STMicroelectronics
  • Sony
  • Ericsson
  • Cisco
  • Gogo
  • Infinite Omicron, LLC.

chroot(1), mount(8), binfmt_misc, ptrace(2), qemu(1), sb2(1), bindfs(1), fakeroot(1), fakechroot(1)

Visit for help, bug reports, suggestions, patches, ... Copyright (C) 2021 PRoot Developers, licensed under GPL v2 or later.

_____ _____ ___ | __ \ __ \_____ _____| |_ | __/ / _ \/ _ \ _| |__| |__|__\_____/\_____/\____|

2021-09-01 5.2.0